Signal: a function of one or more independent variables (e.g., time and spatial variables); typically contains information about the behavior or nature of some physical phenomena
信号是一系列独立变量
System: responds to a particular signal input by producing another signal(output)
系统是其一个信号进, 一个信号出
Transformation
Time reflection: x(t) ←→ x(−t), x[n] ←→ x[−n]
Time scaling: x(t) ←→ x(ct)
Time shift: x(t) ←→ x(t − t0), x[n] ←→ x[n − n0]
Usually do shift then scaling to avoid complex mathematics
Even and Odd functions
Every signal function is x(t)=Even(x)+Odd(t) ,then
Output only depends on input at the same time or before
Stability
Bounded input gives Bounded output
Time-Invariance
A time-shift in the input causes a same time-shift in the output
x[n]→y[n] then x[n−n0]→y[n−n0]
Example:
Linearity
Additivity and Scaling
If x[n]→y[n] then ax1[n]+bx2[n]→ay1[n]+by2[n]
If linear, zero input gives zero output
x[n]=0→y[n]=2x[n]=0
Convolution
Begin
We can construct any signal by discrete function y[n]=x[k]δ[n−k], so that y[n]can be valued only at k and get x[k]. By accumulation, the signal can be piled up. This is convolution, defined by x[n]=Σk=−∞∞x[k]δ[n−k]=x[n]∗h[n], which is called convolution sum.
Slide reversed x(t), for each g(t), is integral of multiplication
g(t)=∫dtdx∗h(t)dt=…
\begin{equation} g(t)=\frac{d}{d t} \int x * h(t) d t=\ldots \end{equation}
逆变换
Eigen-function of L.T.I
Eigen-functions
A signal for which the system's output is just a constant (possibly complex) times the input.
Eigen Basis: If an input signal can be decomposed to a weighted sum of eigenfunctions (eigen basis), then the output can be easily found.
So goal: Getting an Eigen basis of an L.T.I system.
e^{st} as eigenfunction of L.T.I
Consider the input to be x(t)=est, then the output is y(t)=∫h(τ)es(t−τ)dτ=est∫h(τ)e−sτdτ
\begin{equation} H(s)=\int h(\tau) e^{-s \tau} d \tau \end{equation} is just a constant, i.e. eigenvalue for function est
Orthonormal Basis
When s purely imaginary \begin{equation} j k \omega_{0} \end{equation}, \begin{equation} e^{j k \omega_{0} t} \end{equation} is orthonormal and standard among different .
Definition of inner-product of perioidic functions: \begin{equation} <x_{1}(t), x_{2}(t)>=\frac{1}{T_{0}} \int_{T_{0}} x_{1}(t) x_{2}^{*}(t) d t \end{equation}
Fourier Transform: \begin{equation} \mathcal{F}: X(j \omega)=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t \end{equation}
For periodic signals, \begin{equation} X(j \omega)=2 \pi \sum_{-\infty}^{\infty} a_{k} \delta\left(\omega-k \omega_{0}\right) \end{equation}, i.e. the Fourier Series
\begin{equation} X(j \omega) \end{equation}is called the "Spectrum" of x(t)