EE 150: Signals and Systems

ShanghaiTech University - Spring 2021

file-pdf
280KB
Summary from UCB

Basic concepts

Signals and Systems

  • Signal: a function of one or more independent variables (e.g., time and spatial variables); typically contains information about the behavior or nature of some physical phenomena

    • 信号是一系列独立变量

  • System: responds to a particular signal input by producing another signal(output)

    • 系统是其一个信号进, 一个信号出

A kind of signal

Transformation

  • Time reflection: x(t) ←→ x(−t), x[n] ←→ x[−n]

  • Time scaling: x(t) ←→ x(ct)

  • Time shift: x(t) ←→ x(t − t0), x[n] ←→ x[n − n0]

  • Usually do shift then scaling to avoid complex mathematics

Even and Odd functions

Every signal function is x(t)=Even(x)+Odd(t)x(t) = Even(x) + Odd(t) ,then

x(t)=Even(t)+Odd(t)=Even(t)Odd(t) x(-t) = Even(-t) + Odd(-t) = Even(t) - Odd(t)

Even(t)=12(x(t)+x(t)) Even(t) = \frac12 ( x(t) + x(-t) )

Odd(t)=12(x(t)x(t)) Odd(t) = \frac12 ( x(t) - x(-t) )

Periodic

  • Preodic: x(t)=x(t+mT) x(t) = x(t+mT) or x[t]=x[t+mT] x[t] = x[t+mT]

    • Fundamental period TT: Smallest positive TT

    • 如果是合成的 signal, 其 Fundamental Period 是最小公倍数

  • Aperiodic: Non-preodic

Eular's Formula

ejω0t=cos(ω0t)+jsin(ω0t) e^{j \omega0 t} = \cos ( \omega0 t ) + j \cdot \sin (\omega_0 t)

  • Fundamental period T0=2π/ω0T_0 = 2 \pi / \mid \omega _0 \mid

  • Acos(ω0t+ϕ)=A2ejϕejω0t+A2ejϕejω0tA \cos (\omega0 t + \phi) = \frac A2 e^{j \phi} e^{j \omega_0 t} + \frac A2 e^{-j \phi} e^{-j \omega_0 t}

  • 只要基础频率 ω0 \omega_0 一样, 指数和三角函数可以互相转化

Sin

x(t)=Acos(ω0t+ϕ) x(t) = A \cos (\omega _0 t + \phi )

  • unit: ω0\omega_0

  • radians: ϕ\phi

  • phase: ω0t+ϕ \omega_0t+\phi

Fundamantal Frequency, 角频率越大, 振荡越大

Discrete Time Unit Step and Unit Impulse Sequence

  • δ[n] \delta[n]

    • 只有 n=0n=0有正值

  • u[n] u[n]

    • 只有 n0 n \geq 0 有正值

u[n] u[n] 相当于 δ[n]\delta[n]的积分

常见信号与周期判断

功率与能量

Other concepts

  • Energy and Power of Periodic Signals: 积分与积分后的处理

  • 谐振: 同一个角频率的集合

Properties of System

Memory / Memoryless

Output only depends on input at the same time

Invertibility and Inverse System

Distinct input leads to distinct output

Causality

circle-info

All memoryless are causal

Output only depends on input at the same time or before

Stability

Bounded input gives Bounded output

Time-Invariance

A time-shift in the input causes a same time-shift in the output

x[n]y[n] x[n] \to y[n] then x[nn0]y[nn0] x[n-n_0] \to y[n-n_0]

Example:

Linearity

Additivity and Scaling

If x[n]y[n] x[n] \to y[n] then ax1[n]+bx2[n]ay1[n]+by2[n] ax_1[n] + bx_2[n] \to ay_1[n] + b y_2 [n]

circle-info

If linear, zero input gives zero output

x[n]=0y[n]=2x[n]=0x[ n]=0 \to y[n] = 2x[n] = 0

Convolution

Begin

We can construct any signal by discrete function y[n]=x[k]δ[nk] y[n] = x[k]\delta[n-k] , so that y[n]y[n]can be valued only at kk and get x[k]x[k] . By accumulation, the signal can be piled up. This is convolution, defined by x[n]=Σk=x[k]δ[nk]=x[n]h[n] x[n] =\Sigma _{k = - \infty} ^ {\infty} x[k]\delta[n-k] = x[n] * h[n] , which is called convolution sum.

Example:

Origin Signal
pile up

Properties of Convolution

  • Commutative: x(t)h(t)=h(t)x(t)x(t)∗h(t) =h(t)∗x(t)

    • 交换律

  • Bi-linear: (ax1(t)+bx2(t))h(t)=a(x1h)+b(x2h),x(ah1+bh2)=a(xh1)+b(xh2)(ax_1(t) +bx_2(t))∗h(t) =a(x_1∗h) +b(x_2∗h),x∗(ah_1+bh_2) =a(x∗h_1) +b(x∗h_2)

  • Shift: x(tτ)h(t)=x(t)h(tτ)x(t−τ)∗h(t) =x(t)∗h(t−τ)

  • Identity: δ(t) is the identity signal, xδ=x=δx x∗δ=x=δ∗x

    • Identity is unique: i(t)=i(t)δ(t)=δ(t)i(t) =i(t)∗δ(t) =δ(t)

  • Associative: x1(x2x3)=(x1x2)x3x_1∗(x_2∗x_3) = (x_1∗x_2)∗x_3

  • Smooth derivative: y(n)=x(n)h(n)=x(n)h(n) y(n)' = x(n)'*h(n) = x(n)*h(n)'

Properties of L.T.I System

  • Memoryless: x[n]0x[n] \neq 0 when n=0 n = 0

  • Invertibility: A system is invertible only if an inverse system exists.

  • Causality: h[n]=0h[n] = 0 when n<0 n < 0

    • y[n]=k=0h[k]×[nk] y[n]=\sum_{k=0}^{\infty} h[k] \times[n-k]

  • Stability:

    • (k=h[k]<) ( \sum_{k=-\infty}^{\infty}|h[k]|<\infty )

  • Convolving δ(t)δ(t) with itself

    • (δ(t)δ(t))=δ(t) ( \delta(t) * \delta(t)) = \delta(t)

Calculation

Sliding window:

  1. Reverse the simpler one x(t)x(t)

  2. Record reversed x(t)x(t) 's jumping points

  3. Slide reversed x(t)x(t), for each g(t)g(t), is integral of multiplication

g(t)=ddtxh(t)dt= g(t)=\int \frac{d}{d t} x * h(t) d t=\ldots

逆变换

Eigen-function of L.T.I

Eigen-functions

  • A signal for which the system's output is just a constant (possibly complex) times the input.

  • Eigen Basis: If an input signal can be decomposed to a weighted sum of eigenfunctions (eigen basis), then the output can be easily found.

So goal: Getting an Eigen basis of an L.T.I system.

e^{st} as eigenfunction of L.T.I

  1. Consider the input to be x(t)=est x(t) = e^{st}, then the output is y(t)=h(τ)es(tτ)dτ=esth(τ)esτdτ y(t)=\int h(\tau) e^{s(t-\tau)} d \tau=e^{s t} \int h(\tau) e^{-s \tau} d \tau

  2. is just a constant, i.e. eigenvalue for function est e^{st}

Orthonormal Basis

When s s purely imaginary , is orthonormal and standard among different .

  • Definition of inner-product of perioidic functions:

Fourier Analysis

CT & DT

  • CT: ejωt e^{j\omega t }

    • 纯虚数

  • DT: ejωn e^{j \omega n }

Periodic signals & Fourier Series Expansion

x(t)x(t) may be expressed as a Fourier series:

,

sum of sinusoids whose frequencies are multiple of ω0, the “fundamental frequency”.

Where aka_k can be obtained by

  • Case 0 is often special!

  • a0a_0 controls a constant

And,

x(t)=k=akejkω0t=k=(akcos(kω0t)+jaksin(kω0t))=a0+k>0((ak+ak)cos(kω0t)+j(akak)sin(kω0t))\begin{aligned} x(t) &=\sum_{k=-\infty}^{\infty} a_{k} e^{j k \omega_{0} t} \\ &=\sum_{k=-\infty}^{\infty}\left(a_{k} \cos \left(k \omega_{0} t\right)+j a_{k} \sin \left(k \omega_{0} t\right)\right) \\ &=a_{0}+\sum_{k>0}\left(\left(a_{k}+a_{-k}\right) \cos \left(k \omega_{0} t\right)+j\left(a_{k}-a_{-k}\right) \sin \left(k \omega_{0} t\right)\right) \end{aligned}

Odd / Even

奇偶特性

Approximation

Linearity

z(t)=αx(t)+βy(t)Sαak+βbkz(t)=\alpha x(t)+\beta y(t) \underset{\longleftrightarrow}{\longleftarrow S}{\longrightarrow} \alpha a_{k}+\beta b_{k}

Time-shift

x(tt0)FSejkω0t0akx\left(t-t_{0}\right) \stackrel{F S}{\longleftrightarrow} e^{-j k \omega_{0} t_{0}} a_{k}

Time-reverse

x(t)FSakx(-t) \stackrel{F S}{\longleftarrow} a_{-k}

Time-scaling

x(αt)=k=akejk(αω0)tx(\alpha t)=\sum_{k=-\infty}^{\infty} a_{k} e^{j k\left(\alpha \omega_{0}\right) t}

Multiplication

x(t)y(t)S,hk=l=albk1x(t) y(t) \underset{\longleftrightarrow}{\longleftrightarrow S}, h_{k}=\sum_{l=-\infty}^{\infty} a_{l} b_{k-1}

which is Convolution

conjugation & conjugate symmetry

7

dx(t)dtFS,jkω0ak\frac{d x(t)}{d t} \longleftrightarrow F S, j k \omega_{0} a_{k}

tx(τ)dτ FS ,akjkω0\int_{-\infty}^{t} x(\tau) d \tau \underset{\longleftrightarrow}{\text { FS }}, \frac{a_{k}}{j k \omega_{0}}

Parseval's identity

1TTx(t)2dt=k=ak2\frac{1}{T} \int_{T}|x(t)|^{2} d t=\sum_{k=-\infty}^{\infty}\left|a_{k}\right|^{2}

Proof:

1TTx(t)2dt=1TTk1,k2ak1ak2ej(k1k2)ω0tdt=k1,k2ak1ak2δ[k1k2]=kak2\begin{aligned} \frac{1}{T} \int_{T}|x(t)|^{2} d t &=\frac{1}{T} \int_{T} \sum_{k_{1}, k_{2}} a_{k_{1}} a_{k_{2}}^{*} e^{j\left(k_{1}-k_{2}\right) \omega_{0} t} d t \\ &=\sum_{k_{1}, k_{2}} a_{k_{1}} a_{k_{2}}^{*} \delta\left[k_{1}-k_{2}\right] \\ &=\sum_{k}\left|a_{k}\right|^{2} \end{aligned}

Continuous-Time Fourier Transform (CTFT)

变换与逆变换

Fourier series:

Inverse fourier transform: x(t)=12πX(jω)ejωt dω x(t)=\frac{1}{2 \pi} \int_{\infty}^{\infty} X(j \omega) \mathrm{e}^{j \omega t} \mathrm{~d} \omega

Fourier Transform Pair

Fourier Transform:

  • For periodic signals, , i.e. the Fourier Series

  • is called the "Spectrum" of x(t) x(t)

Inverse F.T.

Dual Porperty

Means that when we put the in time domain, it will produce 2π 2\pi times x(t) x(-t) waveform in freq domain

Properties

Normal CT Fourier Pairs

REF

Last updated