EE 150: Signals and Systems
ShanghaiTech University - Spring 2021
Last updated
Was this helpful?
ShanghaiTech University - Spring 2021
Last updated
Was this helpful?
Signal: a function of one or more independent variables (e.g., time and spatial variables); typically contains information about the behavior or nature of some physical phenomena
信号是一系列独立变量
System: responds to a particular signal input by producing another signal(output)
系统是其一个信号进, 一个信号出
Time reflection: x(t) ←→ x(−t), x[n] ←→ x[−n]
Time scaling: x(t) ←→ x(ct)
Time shift: x(t) ←→ x(t − t0), x[n] ←→ x[n − n0]
Usually do shift then scaling to avoid complex mathematics
如果是合成的 signal, 其 Fundamental Period 是最小公倍数
Aperiodic: Non-preodic
\begin{equation} \mathrm{e}^{-\mathrm{j} \omega t}=\cos (\omega t)-\mathrm{j} \sin (\omega t) \end{equation}
\begin{equation} \cos (\omega t)=\frac{1}{2}\left(\mathrm{e}^{\mathrm{j} \omega t}+\mathrm{e}^{-\mathrm{j} \omega t}\right) \end{equation}
\begin{equation} \sin (\omega t)=\frac{1}{2 \mathrm{j}}\left(\mathrm{e}^{\mathrm{j} \omega t}-\mathrm{e}^{-\mathrm{j} \omega t}\right) \end{equation}
Energy and Power of Periodic Signals: 积分与积分后的处理
谐振: 同一个角频率的集合
Output only depends on input at the same time
Distinct input leads to distinct output
All memoryless are causal
Output only depends on input at the same time or before
Bounded input gives Bounded output
A time-shift in the input causes a same time-shift in the output
Example:
Additivity and Scaling
If linear, zero input gives zero output
Example:
交换律
Invertibility: A system is invertible only if an inverse system exists.
\begin{equation} y[n]=\sum_{k=-\infty}^{n} x[k] h[n-k] \end{equation}
Stability:
Sliding window:
\begin{equation} g(t)=\frac{d}{d t} \int x * h(t) d t=\ldots \end{equation}
A signal for which the system's output is just a constant (possibly complex) times the input.
Eigen Basis: If an input signal can be decomposed to a weighted sum of eigenfunctions (eigen basis), then the output can be easily found.
So goal: Getting an Eigen basis of an L.T.I system.
Definition of inner-product of perioidic functions: \begin{equation} <x_{1}(t), x_{2}(t)>=\frac{1}{T_{0}} \int_{T_{0}} x_{1}(t) x_{2}^{*}(t) d t \end{equation}
\begin{equation} \mathrm{e}^{\mathrm{j} \omega \mathrm{t}} \longrightarrow \mathrm{H}(\mathrm{j} \omega) \mathrm{e}^{\mathrm{j} \omega \mathrm{t}} \end{equation}
纯虚数
\begin{equation} \mathrm{e}^{j \omega n} \rightarrow H\left(\mathrm{e}^{j \omega}\right) \mathrm{e}^{j \omega n} \end{equation}
\begin{equation} x(t)=\sum_{k=-\infty}^{\infty} a_{k} \cdot e^{j k \omega_{0} t} \end{equation}, \begin{equation} x(t) \leftarrow{ }^{F . S .} \rightarrow a_{k} \end{equation}
sum of sinusoids whose frequencies are multiple of ω0, the “fundamental frequency”.
\begin{equation} a_{k}=\frac{1}{T_{0}} \int_{T_{0}} x(\tau) e^{-j k \omega_{0} \tau} d \tau \end{equation}
Case 0 is often special!
And,
which is Convolution
Proof:
Fourier series: \begin{equation} x(t)=\sum_{k=-\infty}^{\infty} a_{k} \mathrm{e}^{j k \omega_{0} t} \end{equation}
Fourier Transform: \begin{equation} \mathcal{F}: X(j \omega)=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t \end{equation}
For periodic signals, \begin{equation} X(j \omega)=2 \pi \sum_{-\infty}^{\infty} a_{k} \delta\left(\omega-k \omega_{0}\right) \end{equation}, i.e. the Fourier Series
Inverse F.T. \begin{equation} \mathcal{F}^{-1}: x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(j \omega) e^{j \omega t} d \omega \end{equation}
\begin{equation} \mathcal{F}(\mathcal{F}(x(t)))=2 \pi \cdot x(-t) \end{equation}
Every signal function is ,then
Preodic: or
Fundamental period : Smallest positive
Fundamental period
只要基础频率 一样, 指数和三角函数可以互相转化
unit:
radians:
phase:
只有 有正值
只有 有正值
相当于 的积分
then
If then
We can construct any signal by discrete function , so that can be valued only at and get . By accumulation, the signal can be piled up. This is convolution, defined by , which is called convolution sum.
Commutative:
Bi-linear:
Shift:
Identity: δ(t) is the identity signal,
Identity is unique:
Associative:
Smooth derivative:
Memoryless: when
Causality: when
Convolving with itself
Reverse the simpler one
Record reversed 's jumping points
Slide reversed , for each , is integral of multiplication
Consider the input to be , then the output is
\begin{equation} H(s)=\int h(\tau) e^{-s \tau} d \tau \end{equation} is just a constant, i.e. eigenvalue for function
When purely imaginary \begin{equation} j k \omega_{0} \end{equation}, \begin{equation} e^{j k \omega_{0} t} \end{equation} is orthonormal and standard among different .
CT:
DT:
may be expressed as a Fourier series:
Where can be obtained by
controls a constant
Inverse fourier transform:
\begin{equation} X(j \omega) \end{equation}is called the "Spectrum" of
Means that when we put the \begin{equation} X(j \omega) \end{equation} in time domain, it will produce times waveform in freq domain