Signal: a function of one or more independent variables (e.g., time and spatial variables); typically contains information about the behavior or nature of some physical phenomena
信号是一系列独立变量
System: responds to a particular signal input by producing another signal(output)
系统是其一个信号进, 一个信号出
A kind of signal
Transformation
Time reflection: x(t) ←→ x(−t), x[n] ←→ x[−n]
Time scaling: x(t) ←→ x(ct)
Time shift: x(t) ←→ x(t − t0), x[n] ←→ x[n − n0]
Usually do shift then scaling to avoid complex mathematics
Even and Odd functions
Every signal function is x(t)=Even(x)+Odd(t) ,then
x(−t)=Even(−t)+Odd(−t)=Even(t)−Odd(t)
Even(t)=21(x(t)+x(−t))
Odd(t)=21(x(t)−x(−t))
Periodic
Preodic: x(t)=x(t+mT) or x[t]=x[t+mT]
Fundamental period T: Smallest positive T
如果是合成的 signal, 其 Fundamental Period 是最小公倍数
Aperiodic: Non-preodic
Eular's Formula
ejω0t=cos(ω0t)+j⋅sin(ω0t)
Fundamental period T0=2π/∣ω0∣
Acos(ω0t+ϕ)=2Aejϕejω0t+2Ae−jϕe−jω0t
只要基础频率 ω0 一样, 指数和三角函数可以互相转化
Sin
x(t)=Acos(ω0t+ϕ)
unit: ω0
radians: ϕ
phase: ω0t+ϕ
Fundamantal Frequency, 角频率越大, 振荡越大
Discrete Time Unit Step and Unit Impulse Sequence
δ[n]
只有 n=0有正值
u[n]
只有 n≥0有正值
u[n]相当于 δ[n]的积分
常见信号与周期判断
功率与能量
Other concepts
Energy and Power of Periodic Signals: 积分与积分后的处理
谐振: 同一个角频率的集合
Properties of System
Memory / Memoryless
Output only depends on input at the same time
Invertibility and Inverse System
Distinct input leads to distinct output
Causality
All memoryless are causal
Output only depends on input at the same time or before
Stability
Bounded input gives Bounded output
Time-Invariance
A time-shift in the input causes a same time-shift in the output
x[n]→y[n] then x[n−n0]→y[n−n0]
Example:
Linearity
Additivity and Scaling
If x[n]→y[n] then ax1[n]+bx2[n]→ay1[n]+by2[n]
If linear, zero input gives zero output
x[n]=0→y[n]=2x[n]=0
Convolution
Begin
We can construct any signal by discrete function y[n]=x[k]δ[n−k], so that y[n]can be valued only at k and get x[k]. By accumulation, the signal can be piled up. This is convolution, defined by x[n]=Σk=−∞∞x[k]δ[n−k]=x[n]∗h[n], which is called convolution sum.